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CURVE STITCHING )

The art of sewing beautiful mathematical patterns

tarquin publications Jon Millington




“In my young days cards of different shapes were sold in
pairs, in fancy shops, for making needle-books and pin-
cushions. The cards were intended to be painted on; and
there was a row of holes round the edge by which twin
cards were to be sewn together. As I could not paint, it got
itself somehow suggested to me that I might decorate the
cards by lacing silk threads across the blank spaces by
means of the holes. When 1 was tired of so lacing that the
threads crossed in the centre and covered the whole card,
it occurred to me to vary the amusement by passing the
thread from each hole to one not exactly opposite to it,
thus leaving a space in the middle. I can feel now the
delight with which I discovered that the little blank space
so left in the middle of the card was bounded by a
symmetrical curve made up of a tiny bit of each of my
straight silk lines.”

So wrote Mary Boole in 1904, some sixty years after she
had invented curve stitching.
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The art of sewing beautiful mathematical patterns

Curve stitching is a topic which can be approached on many
different levels. First and foremost it is a handicraft which is
accessible to quite young children and which can be enjoyed
without any need to understand the mathematical fundamentals
which lie beneath it. At this level it is best to avoid the need for
too much accurate measuring. Lovely patterns can be made
simply by marking equal lengths along straight lines using a
ruler. For circle designs, a protractor or a simple template can
be used to mark equally spaced points around a circumference.
From such simple beginnings many of the designs in this book
are generated. As skill and enthusiasm develops, it is natural to
progress to polygons and more complex patterns.

The computer offcrs another line of approach. It is an excellent
tool for investigating the possibilitics of curve stitching. In this
book there are 35 programs written in QBASIC. None of the
programs is very long and all may be modified at will. With
some knowledge of programming they can be adapted for other
computers. The illustrations in the computer section also form a
useful index of designs for curve stitching, whether or not a
computer is available.

At a deeper level, we may think of curve stitching as an
essentially mathematical activity. Why for instance does a
parabola arise when sewing between equally spaced points on a
pair of straight lines? Can we generate other curves so simply?
What mathematical properties does a chosen curve have? Would
one of these properties allow us to generate the chosen curve
by a simple sewing rule? It is very satisfying to be able to sew a
cardioid from cqually spaced points around a circle by using
such a rule. But since a cardioid is an epicycloid, can other
epicycloids and hypocycloids be similarly generated? Such
investigations are the very stuff of mathematics and it is hoped
that this book will stimulate such endeavours.

However, let us never lose sight of the fact that curve stitching is
a practical activity and that the test of every method is that it
really works and is pleasing and satisfying to sew.
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1.
Getting started




| Getting started

It is remarkable that a curve can be suggested by comparatively few lines, each
contributing a very small part to what is known as the envelope of that curve.

Often it is a good idea to draw any intended pattern before starting to sew. In this
way you can decide the best overall size and the spacing to adopt between points in
the sewn version. Moreover, a drawing will possess its own attraction whether done
in pencil, ink or crayon.

The best examples of curve stitching occur when the number and spacing of the
threads seems “about right”. Exactly what is meant by this expression is an artistic
rather than a mathematical judgement, but one that most people seem to
understand after only a little practice.
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the back of the card. Only the points where the holes are needed are pricked
through and they should be as small as possible. Use the smallest needle which can
be threaded with the chosen thread. Holes which are too large are conspicuous and
detract from the elegance of the finished design. Likewise every effort should be
made to make sure that no pencil marks or any writing or dirty marks appear on
the front of the card.

Marking out straight lines

The most obvious way of marking equal divisions along straight lines ready for
pricking through is to use a pencil and ruler. If the ruler has both metric and
Imperial markings then it will be easier to find a suitable spacing for the design you
have in mind. Alternatively, you can use the templates on page 93 or cut out strips
of card and make your own templates using the proportional scale on page 4. As
long as the points on a line are evenly spaced the exact spacing is not critical and
you will have no difficulty in arriving at something suitable.
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Using a proportional scale

Quite often, however, you will not be starting from scratch, but will need to fit a
certain number of divisions into a fixed length. Perhaps you want to divide the side of
a polygon into 12 equal lengths. Fortunately, if none of the fixed scales would work
out exactly, there is a very simple solution to the problem. With the proportional scale
on page 4 you can divide any length into any number of equal divisions. All you need
is a straight-edged piece of scrap paper.

On the straight edge of the piece of scrap paper, mark off the distance you want to
divide into 12. Place it on the proportional scale and slide it up and down (keeping it
parallel to the horizontal lines) until there are 12 equal spaces between your marks.
Then copy these divisions on to the edge of the scrap paper and use it as a template to
mark off the line on your design.

Marking out circles

Circles drawn with a pair of compasses can be of any convenient size. Using a
protractor to measure angles, you can divide the circumference into the required
number of equal lengths. A Tarquin circular protractor is ideal. It is always easier to
work with whole numbers of degrees which are factors of 360° and so certain numbers
of points are much easier to mark than others, as shown in the table.

No. of points 6 9|10] 12| 15| 18| 20| 24| 30| 36| 40| 60 | 72
Angle 60°| 40°| 36°| 30°| 24°| 20°| 18%| 15°| 12°| 10°| 9°| &° 57

A circle of radius 52mm is a suitable size because many protractors are just over
100mm in diameter and so will just fit inside the circle, enabling its circumference to
be marked out easily. The extra 2mm allows for the thickness of the pencil line. This is
a convenient size for a great many designs.

An alternative method to using a protractor, and one which many people find easier, is
to use one of the circular templates from the back of the book. The 36 point template
could be used to mark out 72, 36, 24, 18, 12, 9, 6, 4 or 3 point circles and the 40 point
template to mark out circles with 80, 40, 20,16, 10, 8, 5 or 4 points.

The radius of each of the templates is 65mm with a half-size circle inside. This is a
convenient size and it was used for many of the examples of curve stitching illustrated
in this book. If you want to make templates of other sizes, then use the proportional
scales on pages 91 and 92 to construct them.




Corners of an Octagon

Using mechanical assistance

Another way of avoiding drawing and measuring is to use a gear-wheel from a
construction set or a redundant piece of machinery. You can then mark out one
point for each tooth. Meccano part number 95 is a sprocket wheel with 36 teeth and
there is a Spirograph wheel with 72 teeth. By marking alternate teeth, or indeed one
tooth in 3 or 4, you can divide circles into fewer equal divisions. Of course, multiples
of 36 are not essential. It depends on what size gear-wheels you are able to find.

Marking out regular polygons

Many patterns make use of regular polygons such as squares, hexagons, octagons etc.
Each of them can be constructed within a circle. Use a protractor and the table below
to mark the points around the circumference. Don't forget that a hexagon is best
constructed with compasses alone.

POLYGON TRIANGLE | SQUARE | PENTAGON HEXAGON | OCTAGON |NONAGON | DECAGON | DODECAGON

SIDES 3 4 5 6 8 9 10 12
ANGLE AT o o o o Az0 o o 20
CENTRE 120 920 72 60 45 40 36 30

The templates on pages 93 and 95 also offer a very easy way to construct regular polygons.
An equilateral triangle can be drawn with the 36 point template by marking points 12, 24
and 36. To draw a square, mark points 9, 18, 27, 36 on the 36 point template or the points
10, 20, 30, 40 on the 40 point template. To draw a regular pentagon you need to use the
40 point template, a regular hexagon the 36 point template, and so on. With only a little
practice you will find this a very quick and easy method.

Iz arder to divide the sides of a polygon

! T : é into equal divisions the proportional
R scale is particrlarly useful.




Materials

Success with curve stitching depends on the balance of the two materials, card and
thread. It is the tension of the thread as it crosses the front of the card which gives
the straight lines. Unlike embroidery, which is usually done with short stitches on a
pliable backing material, mathematical curve stitching is done with long stitches on
a firm backing. The card must be stiff enough not to warp under the tension of the
thread, nor to tear at the holes, but not be so thick that it is difficult to pierce with
the needle. The recommended material is 0.5-0.75mm thick (500-750 micron).

For sewing, ordinary cotton thread works well and is available in an enormous
number of colours. It is not liable to build up into a knot as you pull it through the
card as is sometimes the case with polyester or artificial silk. On larger designs the
thicker polyester button thread, although expensive, is excellent and comes in a
wide range of colours.

For larger patterns, what about using an old bicycle wheel with the spokes
removed? If there are not enough holes you can drill more, perhaps using a metal
template to ensure that the extra holes are equally spaced. Make the design itself
with coloured string which will look most effective when the completed rim is
placed against a contrasting background.

Sewing techniques

Begin by sewing from the back of the card holding the starting end of the thread
firmly in position with a paper clip until the design is complete. Then it is often
possible to tie the starting and finishing ends to each other to secure both, but if
not finish off both ends by sewing them each into their adjacent stitches.

Part of the satisfaction of curve stitching is to waste as little thread as possible and
to make the back of the card look very neat. A golden rule is to try to sew across the
back only as far as an adjacent hole. Sometimes the choice of an odd or even
number of points makes a lot of difference to the

neatness of the sewing.

Since it is seldom possible to judge exactly how
long a piece of thread will be needed, it is best to =
master the art of tying a reef knot.

Of course, the knots must always be on the back!




Practical Suggestions

When you have mastered the art of sewing beautiful curve stitching patterns you
can frame them as pictures for your walls or desk. Or they could be sewn to make
bookmarks or birthday and Christmas cards. Some designs would make a fine
decoration on an address or telephone book or could be sealed in plastic to make a
set of table mats.
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Designs made
from parabolas




How to sew a paraola

Since the parabola is the simplest curve to sew, it is a good idea
to start with it. It is also highly satisfying.

FRONT

12

Remember that all marking out is done on the back of the card.
Start by drawing a pair of lines at any angle on the back. It is
better to let them intersect on the card although this is not
essential.

Having marked the lines A and B, divide each line into 11 equal
divisions numbering them as shown. The intersection is not
numbered as it is not going to be used on this occasion. Prick
through the points to the front of the card.

Start by holding your thread to the back of the card with a
paperclip. Then sew across the front from Al to Bl, B2 to A2, A3
to B3, B4 to A4 and so on, finishing with Al1to B11. Then tie
the pair of loose ends together.

If you wish to sew right into the intersection renumber your
original diagram as shown. The point of intersection then has
the numbers Al and B12. To avoid covering the holes you have
pricked through, start by sewing A2-B2 and continue up to
A12-B12, then sew beneath the card to Bl and over the front to
Al. Now tie the pair of loose ends together.

It is much simpler to sew a parabola than to explain in words
what to do. After you have done a few, you will find that there is
no need to number the points. Then you will begin to feel
confident about sewing parabolas between different pairs of
lines in more complicated designs. In those which follow, this
symbol is used to indicate the position of a standard parabola
between two lines.
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On the back of this parabola, the only stitches showing lie
alternately between pairs of holes. As you will never be able to
judge exactly how much thread is needed, there may well be
several knots. This does not matter as long as they are neatly
tied and kept to the back of the card.

You may, as in this case, be able to tie the two ends of the
thread together when the sewing is finished. If that is possible,
then it gives a neater appearance. If not, sew each end
separately into the next stitch or join the ends with a long knot.

This design did not use the point of intersection and so the
lines on the back are suggested only by the ends of the stitches.
If you then decide that it would look better with the lines
clearly defined, it is a simple matter to sew the additional two
stitches.

13



1. A pair of opposite parabolas

earnsasunrsnasy

AbesaREbaBsisssbasRY

Seessarranen

Sesensscecaraverassssunias

Draw a square and Construct a parabola in
divide each side into the standard way on
26 equal divisions. each of tiwo pairs of

adfacent sides.

Notice that here the outline of the
square is not sewn in, but is suggested
by the ends of the stitches. The holes
which mark two of the corners have not
been used.

Of course the design could be modified
to include the outline and to use these
tWO corners.

14



2. Zig-zag parabolas

Ny ™
Draw a zig-zag with Constrict a parabola in
5 equal arins and the standard way on
divide each into each of the four pairs of
13 equal divisions. adjacent lines.

This simple method of linking parabolas
lends itself to any number of variations.
The lines can be at any angle and need
not be all the same length. Do remember
that if you start with, say, 12 equal
divisions, then each of the other lines,
whatever their lengths, must also each be
divided into 12 equal divisions.

15



3. Three parabolas in a triangle

o "
Trasnisssassastsnanntnnnnt

Draw an equilateral O each peiir of fines
triangle and divide sew a parahola in the
each side into 26 equal standeard way.
divisions.

Notice how the three parabolas form an
attractive shape in the middle of the
equilateral triangle.

When choosing the colours, do consider
which parabola passes under the other
two and which stays on top.

In this design the holes at the three
corners are not used; if a sharp outline is
preferred they could easily be sewn.

16



4. Four parabolas in a square

L TR R Y
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Abesasecessssangsanaratey
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Diraw a square and O each pair of lines
divide each side into sew a parabola in the
26 equal divisions. standard way.

This pattern uses four different colours
for the four parabolas, but alternatively it
might seem natural to make it using only
two colours, one for the pair of parabolas
which pass under and one for the pair
which pass over. Think about which
colours lie on top of your finished design
as the top colours inevitably partially
mask the colours underneath. Again
notice that although the actual corners
were not used they could have been.

17



5. Six parabolas in a hexagon

g
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Draw a regular In each rbombus sew
hexagon with 3 radii, two opposite parabolas
making 3 linked in the standard way,
rhombuses. Divide each time joining d side
each of the 9 lines into to a redius,

13 equal divisions.

This pattern gains some of its harmony
by making use of the fact that the sides
of a hexagon are equal to its radius. A
related, but very different design can be
made by sewing the parabolas between
adjacent sides and adjacent radii, rather
than between a side and a radius.

18



6. Eight parabolas in an octagon

.....

Draw a regular octagon
and 4 vadii to form 4
equal linked
quadrilaterals. Divide
each side of the octagon
into 10 equal divisions.
and then using the same
number and length of
division mark the radii
Sfrom the centre.

In each quadrilateral
sew hwo opposite
parabolas in the
standard way, each
time joining a side to
a radius.

Unlike the hexagon opposite, the radii of
an octagon are not the same length as its
sides. The radii are longer and so there
is a gap on each radius, A simple
varjation would be to mark out the radii
from the comers rather than from the
centre, leaving all the gaps at the centre.

More than one colour could also be used
but think carefully about effects created
when using two, three or four colours.

19



7. Four pairs of parabolas

20

........................

Draw a square and join  Sew four parabolas in

the centre of each side the standcard way

to form 4 linked around the centre of
squares. Divide each the pattern, and then
of the 12 lines into Jour more, one at each
13 equal divisions. corner.

This pattern is made from four pairs of
opposite parabolas. Ignoring these
colours it has mirror symmetry about
four axes. Arranging the colours in a
different way can create a very different
impression and it is a pattern which is
well worth drawing in coloured pencils
or crayons before starting to sew.



8. Eight pointed star

Draw 8 equally spaced Between each pair of
raedil and divide each radii construct a
radius into 11 equal parabola in the
divisions. standard way.

It is probably better to complete the four
parabolas in the first colour, hefore
starting on the second.

Notice how the centre point is not used
here and how this gives rise to an
attractive central star shape. The radii
themselves have not been stitched but if
they had been they would have
intersected at the centre.

The four central parabolas in the
illustration opposite are a variation on
the same design. It is also possible to
make a similar attractive star with 3, 5, 6,
7, 9 or more points. '

21




9. Rotational symmetry from four parabolas

22

Draw a square and its Sew four parabolas in
diagonals. Divide each the standard weay, each
side into 20 divisions time joining a side and
and each diagonal an adjacent balf

into 30. diagonal.

Notice that the diagonals are indicated
only by the ends of the stitches, but that
the sides of the square are sewn, except
for one division.

The windmill design in this illustration
looks as if it is being blown clockwise. If
each half diagonal had been joined to the
other adjacent side the design would look
as if it was being blown anti-clockwise.

Superimposing the two versions is yet
another idea.
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How to sew circle designs

Many circle designs are even easier to sew than those based on the parabola, once
you have divided the circumference into the required number of divisions. The most
obvious method to use to mark out the circle is to draw it with compasses and then
to measure out the angles with a protractor. However, since certain numbers of points
are more useful than others and are frequently needed, it may well be more
convenient to make a collection of circular templates. At the back of the book there
are two templates which will meet most needs. They can by cut out and stored in a
glued pocket inside the back cover. If you prefer to work with different sizes or
numbers of points or simply prefer not to cut the book, then there are some
proportional scales on pages 91 and 92 which will make it easy to construct any
template you arc ever likely to need. More detail about marking out is given on
pages 7 and 8.

A surprising thing about circle designs is how little thread is wasted at the back. Most
only require a stitch to an adjacent hole in order to start the next thread across the
front. It is part of the satisfaction of good curve stitching that the front can be so
complicated and yet the back so simple.

In this section there are four different mystic rose designs, two complete and two
incomplete. For all four the front is both beautitul and elaborate. For the two designs
which are complete, meaning that the mathematical concept is fully worked out, the
backs are very simple. Stitches only go to an adjacent hole. For the two incomplete
designs, however, the backs are as complicated as the fronts.




1. Equal chords

Mark out a 36 point Sew' from each point to
circle. a point 15 steps further
round the circle.

Sewing equal chords within one circle
generates another circle which is smaller
and concentric. The longer the chords of
the larger circle, the smaller the circle at
the centre. Indeed, if you sew diameters,
then the inner circle disappears
altogether. In this illustration, obtained
by counting round 15 points, the chords
generate a circle with about one quarter
of the radius of the large circle.

Patterns of this type are also interesting
to draw, as well as sew. When drawing
them, other mathematical investigations
arise. For example, whether a particular
design is unicursal or not. This is
investigated on page 76.

25



2. Two sets of equal chords.

26

L.

Maik out a 36 point
circle.

Then change colour

aned continue by sewing

from each point to a
point 15 steps further
round the circle.

{sing the first colous,
sew from each point to
a point 11 steps [urther
round the circle.

Each hole is used twice for each set of
chords and all stitches on the back only
reach as far as the adjacent hole. The
threads which form the smaller circle lie
on top, but this could be reversed to
introduce a small change to the design.
To introduce a larger change you could
sew a third set of chords on top of both.




3. Nine point mystic rose

Mayk out a 9 point Join every point to edach
circle. of the other points.

It is probably best to sew
all the fongest threads
Jirst, then the next
longest etc, efc. On the
hack, all threads cross
only das far as an
adjacent hole.

This pattern has a regular nonagon at its
centre, a repeat of the shape from which
it started. Check that each hole has been
used exactly 8 times as it is only too easy
to miss some of the diagonals.

It is also interesting to investigate the
number patterns arising in mystic roses.
Consider the number of diagonals,
intersections and regions produced when
starting with different numbers of points
on the circle. Things are not always as
simple as they appear to be initially:

27




4. Twelve point mystic rose.

28
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Mark out a 12 point Join every point to each
circle. of the other poinis.

1t is probably best to sew
all the longest threads
[first. No threads cross
the back but only go to
the adfacent bole.

Compare this pattern with the nine point
mystic rose. With an even number of
points diameters cross at the centre,
while an odd number of points lecaves a
regular polygon at the centre.

Check carefully to see that the design is
complete. Each hole is used 11 times,
which is one less than the total number of
points on the circle. There are diagonals
of six different lengths at each hole.



5. An incomplete mystic rose
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Mark out a 40 point Starting at the top, mark
circle. 4 equally spaced points

Sew from each marked
point to every other
point. The back of this
design looks very much
like the front.

A complete mystic rose which includes
all the diagonals from 40 points would
be so overcrowded as to lose its
attractiveness. However, by choosing
only four points and sewing all the
diagonals from each in a different colour
produces a lovely result.

The order in which the colours are sewn
makes quite a difference to the look of
the final pattern. Here the blue and red
which are the strongest colours were
sewn before the orange and yellow.

29



6. Sunrise

36

Maik out a 36 point Mark the bottom point
circle. and the points two steps

aweay on etther side.

Seww each marked point
to every other point.
The back of this design
looks very muich like

the front,

Sunrise uses all the diagonals from three
points grouped closely together at the
bottom of the circle. The effect is very
different and it has been enhanced by
using three closely related colours.

Although incomplete mystic roses are
not strictly curve stitching, in that a
curve is not generated by sewing straight
lines, the result created by following a
simple rule can be very effective,

30



7. Sunflower

Meark out 2 concentric Sew from each point on
36 point circles whose the outer circle to a point
points lie on the same 2 steps further rourd on
radial lines. the inner circle.

After completing the
whole circle, continue
by sewing again from
each point on the outer
circle to the point 6 steps
Suriber round in the
same direction on the
inner civcle.

The sunflower is very simple to sew and
it can easily be modified by changing the
size of the inner circle and by altering
the rules about the number of steps
further round. Tt can also be sewn to
create clockwise versions.

This pattern is most attractive, but it is
not strictly curve stitching as both circles
arise only from the initial drawing and
not from the threads. However, the
petals only appear as the design is sewn.

31



8. Two linked circles

A
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Mark out 2 equally Number each circle
sized 36 point aides that  clockwise, with the “1”
interlock for a thivd of starting len steps further
their circumyferences. round on the right band
(12 steps) circle,

Sew from 1to 1, 210 2,
up to 36 to 36.

This pattern is just one representative of
a whole family of possible curves which
can be generated from two linked circles
using essentially the same approach.
With the circular template, it is easy to
adjust the drawing so that any number
of points interlock between the circles.
The other source of variation is where
to start numbering.

On page 38, there is a further development
of this idea using three circles.



9. Concentric circles 1
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Mark out a 72 point
circle with a diameter
that is twice that of an
inner 36 point circle.
Every second point on
the outer circle should
he on the same radial
line as a point on the
inner circle.

Sew from 1 1o 1, 2102

up to 36 to 36. Continue

by going round the
inner circle Jor a

second time joining I lo

37. 210 38 and so on,
[finishing with 36 to 72

Number each circle
clockuwise starting at the
same radius, the outer
Sfrom 1 io 72 and the
finer from 1 1o 30.

Complicated as this pattern appears to be,
the back is extremely simple. The only
stitches showing are between alternate
pairs of adjacent points on cach
circumference. The centre portion rather
resembles a cardioid (see page 44), but is
not defined by the same sewing rule and
so the resemblance is only superficial.
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10. Concentric circles 2
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lie on the same radial
tine as a point on the
inner civcle.

Sew from 1 1o 1, 210 2, s & ™.,
Jinishing with 36 1o 36. i \ %
Continue by going i i 4
round the inner circle A 2 ;:

Jor a second time i
Joining 11037, 21038, || Mteeeseeen®

. 0
-----

Sfinishing with 36 to 72.

Although the sewing rule here is exactly
the same as for the pattern overleaf, the
finished result is remarkably different.
The only change was to number the
inner circle anticlockwise rather than
clockwise. The stitches showing on the
back are also between alternate pairs of
adjacent points.



4.
Further
development




Further deveoplments

The interesting problem of searching for ways to sew curves of
special mathematical significance is explored in this section.
This means finding some property of each curve which
generates an envelope without too much drawing and
measuring. The most satisfying designs to sew are those where
an important mathematical property of the curve is illustrated
by following a simple rule.
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This section contains a collection of more advanced patterns
cach complete in itself, but also chosen to suggest interesting
lines of approach and experimentation. For instance, the linked
parabola designs on this page could be copied as they stand,
but it is far more valuable to use them to stimulate your own
ideas. The concept of the hidden outline, illustrated by the
design above, is an idea with much potential for further
development.



1. Equal chords in a square

Falh | S B >
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This pattern is very impressive because it seems remarkable that
threads taken from what appear to be random points on the
sides of a square none the less give a perfect circle at the centre.

SRSV IaE

%

The diagram of the back of the card solves the mystery. Draw an
equal chord design in a circle and then superimpose a square
on it. Carefully mark the points where the chords cross the
square and prick holes at those points. Then sew only those
portions of the chords which come within the square. Here a 36
point circle has been used together with a 13 step equal chord
pattern. The number of points must be a multiple of 4.

An easy adaptation of this design would be to start with a 36
point outer circle and then to use the outline of a hexagon
rather than a square, or a 40 point circle and an octagon.
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2. Three linked circles

Draw the equilateral triangle A B C, and then construct three
circles centred on its corners each with radius 3/5 the length of
the sides of the triangle. Now draw in the larger equilateral

triangle which will help you to mark each circle with 24 points.

Number each circle clockwise as shown.
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Work on two circles at a time linking them by sewing from 1 to
1, 2 to 2 ... 24 to 24. First link circles A and B, then B and C and
finally C and A, This is a development which follows on from
two linked circles (page 32).

To obtain exactly this design you must follow these instructions
precisely. However, there are many other ways of linking three
circles and sewing points on the circumferences which lead to
attractive results. Investigations of this kind are part of the
delight of more advanced curve stitching,.



3. Ellipse from inverses

To construct an ellipse using the principle of inverses draw two
parallel lines and join each number to its inverse on the
opposite parallel, so 5 is joined to 1/5, 4 to /4, 3 to 1/3, 2 to 1/2
and 1 to 1. Do the same with the negative numbers. This seems
the obvious way to proceed and is illustrated in figure 1.
However, it brings the points very close together as you
approach zero and the threads tend to bunch up.

Figure2 N__g

Figure 1 o

Figure 2 shows a rather better method. Divide the distance from
-1 to 1 into equal parts (in this case 10) and sew across to their
inverses on the opposite parallel. Thus 1/5 is joined to 5, 2/5 to
5/2, 3/5 to 5/3, 4/5 to 5/4 and 1 to 1. This gives a more even
distribution of threads and is the one used for the pattern in the
photograph.

Changing the distance between the parallel lines and the
spacing of the numbering gives ellipses of varying eccentricity.
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4. Ellipse from chords

Another method of sewing the envelope of an ellipse is to mark
out and number a 72 point circle. Choose a point F inside but
not at the centre of the circle. In this example F lies on the
horizontal diameter.

Place a set square on the 72 point circle so that its right angle is
on a point on the circumference and F is on an adjacent side.
Draw a chord from this point on the right angle as shown in the
drawing. In theory all you do is repeat this process around the
circle drawing chords which start on cach of the 72 points.
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However there are two snags about using this method when it
comes to sewing. One is that it causes bunching of the chords
towards points 18 and 54 where the chords have zero length.
The other is that chords start but do not necessarily end on
marked points. Both these problems can be avoided by dividing
the circle into quadrants and then selecting only those points
where the chord ends on or near another point. Once a chord
like this has been found it can be repeated in the other three
quadrants. You will find sufficient points in this way to generate
an attractive ellipse.

In this illustration the original circle has also been stitched.



5. Hyperbola

Draw 3 equally spaced parallel lines. Mark out and number a 36
point circle on the centre line whose circumference does not
cut either of the other two lines. Draw a perpendicular line
through the centre of the circle and then choose a point F
which is on the horizontal centre line outside the circle.

As with the ellipse opposite place a set square on the 36 point
circle so that its right angle is on a point on the opposite side of
the circle from E F lies on a side of the set square adjacent to
the right angle. Draw a line from the point on the right angle to
the turthest parallel line as shown in the diagram.

27 ] (1]

sl

Working on one quadrant fill in a quarter of the pattern with a
set square. Then copy those measurements with a pair of
compasses on to the other three quadrants.

Notice how the points 18 and 36 on the circle are used twice
while 9 and 27 are not used at all. The lines drawn from 9 and
27 on the parallels are tangents so are sewn straight from the
top to the bottom line.



The classic way of describing a curve of pursuit is to imagine
that a dog sees a rabbit crossing its path. He decides to give
chase but, after running for a short distance, notices that the
rabbit is no longer directly in front of him, so he changes
direction to run towards where the rabbit now is. But the rabbit
keeps running so the dog again has to change direction. This
sequence will continue indefinitely if, as is assumed, they are
both running at the same speed.
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In the diagram the distances ZY, AB, YX, BC etc., are all the
same length.

The photograph shows a pattern made from three identical
curves of pursuit sewn within a 36 point circle. Designs like this
can be further developed with clockwise and anticlockwise
versions being combined in various ways.




7. Tractrix

A tractrix, or tractory, is so called because it is the curve traced
out by a rod being pulled by a person travelling in a straight
line, with the other end of the rod not being on this line.

Although the tractrix resembles the curve of pursuit, it is harder
to construct because each stitch must be the same length. The
stitches represent the position of the rod after various intervals
of time.

Using method 1, the end of the rod which is moving along the
straight line is assumed to move at a constant speed and thus
the lengths AB, BC, CD, DE ctc. are all equal. Set a pair of
compasses to the length of the rod AZ. With the compasses find

n o » u

Method 2

the position of Y, which lies on AZ, so that BY = AZ. Then find
X, which lies on BY, so that CX = BY. At each stage the new
position of the end of the rod lics on the previous position of
the rod.

Method 2 shows what happens if instead the distances at the
other end of the rod are supposed equal. The lengths 2Y, YX,
XW, WV etc. are now equal and the compasses are used to find
the positions of A, B, C, D, E etc. This second method has been
used twice to make the design in the photograph. Two tractrix
curves have been sewn within a square, leaving an intriguing
shape along a diagonal. :
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8. Cardioid

The cardioid is the simplest of the

Sfamily of curves called epicycloids.

it bas a single cusp and devives its
name from its heart-like shape.

An epicycloid is the path traced out by
a point on the circumference of a
circle as it volls around the oulside of
a fixed civcle. The curve obtained is a
cardioid when the fixed circle and the
moving civcle have the same radius.

This design creates a cardioid by
generating the envelope within a
larger circle which bas a radius that is
three times that of the moving circle.

1y o 52 25 — 50 49 — 26
2 -4 26 — 52 50 — 28
3 -6 27 — 54 51 — 30
i-8 28 - 56 52 — 32
5 - 10 29 - 58 53 — 34
6 - 12 30 — GO 54 — 36
7 - 14 31 - 62 55 — 38
8 - 16 32 — 64 56 — 40
9 - 18 33 - 66 57 — 42
10 — 20 34 —~ 68 58 — 44
Tl o D3 35 - 70 59 — 46
12 - 24 26 — 72 60 — 48
13 - 26 37 - 2 61 — 50
14 — 28 38 — 4 62 — 52
15 — 30 39 - 6 63 — 54
16 — 32 40 - 8 64 — 56
17 - 34 41 - 10 65 — 58
18 - 36 42 - 12 66 — 60
19 - 38 43 - 14 67 - 62
20 - 40 44 - 16 68 - 64
21 - 42 45 - 18 69 - 66
22 - 44 46 - 20 70 — 68
23 — 406 47 - 22 71 - 70
24 - 48 48 — 24

Having marked out a 72 point circle numbered so that 72 is at
the top, sew each number to its double. This is straightforward
with stitches as far as 36-72. The next stitch 37-74 is sewn from
37-2 because 74=72+2. The table above shows all the joinings
including the repeated chord 48-24, which has been sewn only
once. It will save thread and keep the back neat if you use the
nearest available point to start your next stitch. Cross off the
stitches from the table as you sew them.



9. Nephroid

1-3 25 - 3 49 - 3

2-6 26 - 6 50 - 6

3 -9 27 - 9 51 - 9

4 - 12 28 - 12 52 = 12

5 - 15 29 - 15 35 - 15

6 — 18 30 - 18 54 — 18

7 - 21 31 - 21 55 - 21

8 - 24 32 - 24 56 - 24

9 - 27 33 - 27 57 - 27

10 - 30 34 - 30 58 - 30

11 - 33 35 - 33 59 = 33

12 - 30 Change Colour 60 — 36

13 - 39 37 =39 61 — 39

14 — 42 38 - 42 62 — 42

15 — 45 39 — 45 63 — 45

16 — 48 40 — 48 64 — 48

17 - 51 41 - 51 65 - 51

18 — 54 42 - 54 66 ~ 54

19 - 57 43 - 57 67 - 57

20 - 60 44 — 60 68 - 60

21 - 63 45 - 63 69 - 63

22 - 66 46 — 66 70 - 66

23 - 69 47 - 69 71 - 69

24 - 72 48 — 72
A nephroid is an epicycloid with Having marked out a 72 point circle numbered so that 72 is at
nwo cusps. 1t 1s so called because the top, sew each number to its treble. This is straightforward
O-£ :f}gﬁzeg”ffe S’Ij’g’j’ng’;"{;:_le with stitches as far as 24-72. The next stitch 25-75 is sewn from

N 7 — i;iij'ng ;'Owi 3 Gf ;;e d(d,,c'[; H;.w 25-3, because 75=72+3. The table above shows all the joinings.
\_ f/ N\ cirele 156 verdlinis There is no need to sew the stitches in the order of the table. It

will save thread and keep the back neat if you use the nearest

This design crectes a nephroid by . . . ;
‘) - s . available point to start your next stitch. Cross off the stitches

generating the envelope within a

larger circle which has a radius from the table as you sew them.
that is four times that of the
moring circle. Change colour half way through sewing this pattern and repeat

the chord 18-54 which occurs again in the second half. The
horizontal axis is the only one which is sewn with two threads.



10. Epicycloid of Cremona
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The epicycloid of Cremona, which is
called after a mathematician of that
name, has three cusps dand is
generated by a point on a circle
rolling round a fixed circle three
times its radius.

This design creales a three-cusped
epicycloid by generating the envelope
within a larger circle which bas a
radius that is five times thai of the
mouing circle.

sewing circle

1 -4 19 - 4 37 - 4 55 - 4

2 -8 20 - 8 38 - 8 56 - 8

3 - 12 21 - 12 39 - 12 57 - 12
4 - 16 22 - 16 40 - 16 58 - 10
5 - 20 23 - 20 41 - 20 59 - 20
6 - 24 24 - 24* 42 — 24 60 — 24
7 - 28 25 - 28 43 - 28 6l - 28
8 - 32 20 - 32 44 - 32 62 — 32
9 - 36 27 - 36 45 - 30 63 - 36
10 - 40 28 - 40 46 — 40 64 - 40
11 - 44 29 - 44 47 - 44 65 — 44
12 — 48 30 - 48 48 — 48% 66 - 48
13 - 52 31 - 52 49 — 52 67 - 52
14 - 56 32 - 56 50 - 50 68 - 50
15 - 60 33 - 60 51 - 60 69 - 60
16 — 64 34 — 04 52 - 64 70 - 64
17 - 68 35 - o8 53 — 68 71 - 08
18 - 72 36 - 72 54 — 72 72 = 72

Mark out a 72 point circle numbered so that 72 is at the top and
then consult the table above. Each point is joined to its
quadruple. The calculation of quadruples is straightforward as
far as 18-72, but 19-76 becomes 19—4 (because 76 = 72+4),
37-148 becomes 37-4 (because 148 = 724+72+4) and 55-220
becomes 55-4 (because 220 = 72+72+72+4). The table above
gives the complete set of chords. The chords marked * do not
have to be sewn as their lengths are zero. Do not try to sew in
order, but go to the nearest available point. This will save thread
and keep the back neat. Cross off each chord as you sew it.

Note that the cardioid, which was obtained by sewing each
number to its double had one cusp. The nephroid which used
the treble had two cusps and the epicycloid of Cremona which
used the quadruple had three cusps.



11. Cycloid

A cycloid is the path traced out by a point on the circumference
of a circle as it rolls along a straight line. From a curve stitching
point of view it is more interesting to sew the half height cycloid
which is the envelope of the diameter. Each stitch is the
diameter of the circle as it rolls along the straight line. To find
the correct sequence of positions, we have to use the property
that the centre of the circle also moves on a straight line and
that equal rotations of the circle give equal movements of the
centre along this line. If the rotations are to be 10° each, then
the centre line should be divided into 18 equal divisions

92°) 2 "7t @ 9%°
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(180° + 18 = 10%). The angles of the diameters are then 90°,
80°, 70°, 60°,..., 10°, 0°, 10°,..., 60°, 70°, 80°, 90°. The length of
each stitch is related to the length of the centre line. If the
length of the centre line is r, then each stitch is 2r + w. (If r =
90mm, then each stitch is 57mm long).

Having sewn one cycloid successfully it is then easy to develop
the idea further and to generate more complex patterns linking
several arches into a single design.



12. Deltoid
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fixed circle

The deltoid is a three-cusped member
of the family of curves called
hypocycloids. A hypocycloid is the
path traced out by a poiit on the
circumference of a circle as it rofls
round the inside of a fixed civcle. The
curve obtained is a deltoid when the
[fixed circle bas a radius three times
that of the mouving circle. This design
creales a deltoid by generating the
envelope oulside a smaller civcle
which bas a radius one thivd that of
the fixed circle. The smaller civcle has
the same radius as the moving circle.

FIRST CUSP SECOND CUSP THIRD CUSP
A 36 - 36 Tangent 12 - 12 T 24 -24 T
B 1-34 13 - 10 25 - 22
C 2 - 32 14 - 8 26 - 20
D 3 - 30 15 -6 27 - 18
E 4 - 28 16 - 4 28 - 16
F 5 - 26 17 - 2 29 - 14
G 0 - 24 Diameter 18 - 36 D 3p0-12 D
F 7 =07 19 - 34 31 - 10
E 8 - 20 20 - 32 32 - 8
D 9 -18 21 - 30 33-6
c 10— 16 22 - 28 34 - 4
B 11- 14 23 - 26 35- 2
A 12-12 Tangent 24 - 24 T 36-36 T

Mark out a 36 point circle and number it so that 36 is at the top. The rule for calculating
the table above is to double each number and then subtract it from 36 (the number of
points on the circle). Subtract numbers larger than 36 from 72. The chords in the table do
not generate the envelope of the deltoid within the circle, but outside it, so this design
must be partially constructed by drawing on the back of the card before starting to sew.

Draw the first cusp by following the first column in the table.

—

. Draw the diameter 6-24 and extend it beyond 6 to double its length, calling the end
point G. Draw tangents at points 36 and 12, calling the point where they meet on the
extended diameter A,

2. Next draw the chords 1 — 34 and 11 - 14, extending them outside the circle. They meet
on the extended diameter at B.

i

. Find C, D, E and F by drawing the corresponding pairs of secants, which meet on the
extended diameter.

4. Now draw in the other two extended diameters and use compasses to transfer the
distances of the points A, B, C, D, E, F and G from the first cusp to the other two cusps.

The diagram opposite should help.

For each stitch, only the numbered point on the blue background is pricked and sewn
through. The stitch passes over the other point and goes to the corresponding lettered
point in the cusp. For instance, the stitch 2 - 32 is sewn through 32, but passes over 2 and
is sewn through C. The stitch 3 — 30 is sewn through 30, but passes over 3 and is sewn
through D. Complete one cusp at a time. For this design only the even numbered points
are ever pricked through,



13. Four deltoids
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Once you have sewn one deltoid successfully, you will realise
that it is far easier to do than to explain. This very attractive
pattern is made by sewing four deltoids so that their cusps
meet at the centre. Complete the design by following the

instructions opposite.

Draw one 36 point circle, number it so that 36 is at the top and
construct the measurements for the points A, B, C, D, E, F and
G on one extended diameter. The other circles need only have
18 points, which should be marked with even numbers 2, 4, 0,
etc. Use compasses to transfer the distances of the points A, B,
C, D, E, F and G from the first extended diameter to the

other eleven,
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14. Astroid 1

50

fixed circle

The astroid is a bypocycloid with four
cusps and is generated by a point on
a circle volling round the inside of a
Sfixed circle four times its radius.

This design creates an astroid by
generating the envelope outside a
smaller circle which bas a radius one
half that of the fixed circle. The
smaller circle bas tiwice the racius of
the moving circle.

FIRST CUSP SECOND CUSP THIRD CUSP FOURTH CUSP
A 36 - 36 ‘Tangent 9 -12 T 18 - 18 T 27-27 T
B 1 - 33 0- 7 19 — 15 28 - 24
C 2 - 30 1- 2 20 - 12 29-21
D 3 - 27 12 - 69 21 - O 30-18
E 4 - 24 13 - G4 22 - 6 31-15
Diameter
B 5 =21 14 — 44 23 - 3 32-12
D 6 - 18 15 -39 24 - 36 3-09
C -15 16 - 34 25 - 33 34— 6
B 8 - 12 17 - 29 26 - 30 35—~ 3
A 9 -9 langent 18-24 T 27 - 27 T 36-36 T

Mark out a 36 point circle and number it so that 36 is at the top. The rule for calculating
the table above is to treble each number and then to subtract it from 36 (the number of
points on the circle). Subtract numbers larger than 36 from 72 or 108,

The chords in the table do not generate the envelope of the astroid within the circle but
outside it, 5o this design must be partially constructed by drawing on the back of the card
before starting to sew.

Although the diameters are not actually sewn, they are needed in the construction. Draw
the first cusp by following the first column in the table,

1. Draw the diameter 2212 — 412 and extend it at 4!z beyond the circle half as far again.
Draw the rangents at points 36 and 9, and call the point where they meet on the
extended diameter A. Points B, C, D and E also lie on this extension.

2. Next draw the chords 1-33 and 8-12, extending them outside the circle. They meet on
the extended diameter at B.

w

. Find C, D and E by drawing the corresponding pairs of secants, which meet on the
extended diameter.

4. Draw the other diameter 1372 — 3112 and extend it both ways outside the circle. Extend
the first diameter outside the circle the other way. Use compasses to transfer the
distances of the points A, B, C, D and E from the first cusp to the other three cusps.

For each stitch, only the numbered point on the blue background is pricked and sewn
through. The stitch passes over the other point and goes on to the corresponding lettered
point in the cusp. For instance 1-33 is sewn through 33, but passes over 1 and is sewn
through B. The stitch 2-30 is sewn through 30, but passes over 2 and is sewn through C.
Complete one cusp at a time. Only those points on the circle where the number divides by
3 are pricked and sewn through.



15. Astroid 2

This is a completely different method of constructing an astroid.

Think of it as a curve generated by a ladder sliding down a wall.
The diagram on the right shows how to construct a quarter of

the design using equally spaced points along the horizontal axis.

The points on the vertical axis arc found with compasses set to
the length of the ladder.

At first glance it may seem as if the envelope is a parabola, but
in fact the astroid is a different curve. The difference comes
about because the divisions are not equally spaced on the
vertical axis.

N

B N N N

There is a similarity between the tractix (page 43) and this
astroid because both have constant stitch length. However the
astroid stitch always lies between the two axes while the tractrix
stitch lies between the axis and the previous stitch.
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16. Six-cusped hypocycloid

The six-cusped bypocycloid is the path
traced out by a poinr on the
circumference of a circle as it rolls
around the inside of a fixed circle
which bas a radius six tmes that of a
moting circle.

This design creates a six-cusped
hypocycloid by generating the
envelope outside a smaller circle
which has a radius two thirds that
of the fixed circle. The simaller circle
has four times the radius of the
moving circle.

fixed circle
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FIRST CUSP SECOND CUSP THIRD CUSP
A 7272 Tangent 12 - 12 T 24 ~-2a T
B 1 -67 13- 7 25 - 19
C 2 - 62 14- 2 26 - 14
D 3 - 57 15 - 69 27 - 9
E 4 -52 16 - G4 28 - 4
by 5 - 47 17 - 59 29 - 71
G 6 — 42 Diamerer 18-54 D 30-66 D
¥ T - 37 19 - 49 31 - 61
E 8 -32 20 - 44 32 - 56
D 9 - 27 21 -39 33 - 51
< 10- 22 22 - 34 34 — 46
B 11-17 23 - 29 35 — 41
A 12 - 12 Tangent 24-24 T 36-36 T

This table produces three of the cusps which is half the design. It will probably be easy
enough to sew the remainder without consulting the table.

Mark out a 72 point circle and number it so that 72 is at the top. The rule for calculating
the table is to multiply each number by 5 and then subtract it from 72 (the number of
points on the circle). Subtract numbers larger than 72 from 144, 216, 288 or 360.

The chords in the table do not generate the envelope of the hypocyloid within the circle,
but outside it, so this design must be partially constructed on the back of the card before
starting to sew.

Draw the first cusp by following the first column in the table.

1. Draw the diameter 6-42 and extend it at 6 beyond the circle a quarter as far again, calling
the end point G. Draw tangents at points 72 and 12 and call the point where they meet
on the extended diameter A. Points B, C, D, E and F also lie on this extension.

[3%]

- Next draw the chords 1-67 and 11-17, extending them outside the circle. They meet on
the extended diameter at B.

3. Find C, D, E and F by drawing the corresponding pairs of secants which meet on the
extended diameter. G is so close to F that they are treated as the same point in this
design.

4. Extend the 6-42 diameter beyond 42, and now draw in the other two diameters and
extend them both ways. Use compasses to transfer the distances A, B, C, D, E, Fand G
from the first eusp to the other five cusps.

For each stitch, only the numbered point on the blue background is pricked and sewn
through. The stitch passes over the ather point and goes to the corresponding lettered
point in the cusp. For instance, the stitch 1 — 67 is sewn through 67, but passes over 1 and
is sewn through B. The stitch 2 — 62 is sewn through 62, but passes over 2 and is sewn
through C. Complete one cusp at a time. Because 72 is not a multiple of 5, all the points on
the cirele except those on the diameters are pricked and sewn, but each one with only one
thread. It is interesting to investigate what happens if the original number of points is
chosen to be 60, a multiple of both 5 and 6.



5.
Computer programs




Programs

List of Programs
1 Parabolas in a polygon . _
2 Parabolas in six polygons e h i
3 Parabolic star \
4 Six parabolic stars A )
5 Curves in a circle lﬂ' AN
6 Curves in six circles (’g“l | N
7  Eight parabolas in a square Y I
8  Parabola design L\\ I/
9 Ellipse from inverses | e
10  Ellipse from chords G .
11 Ellipse from circles
12 Hyperbola
13 Curve of pursuit
14  Curves of pursuit in a circle
15  ‘Tractrix
16 Equal chords !
17  Decreasing chords i
18  Mystic rose
19  Six mystic roses
20 Concentric circles
21  Two linked circles
22 Three linked circles
23 Envelope of a roulette
24 Outline of a roulette
25  Numbering of a roulette
26 Epicycloid
27  Six epicycloids
28 Cardioid from circles
29  Nephroid from circles
30  Cycloid
31 Hypocycloid
32 Six hypocycloids
33 Astroid
34  Four curves
35  Spiral
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Notes on computer programs

Since these programs are very short, they will take you only a
few minutes to type in. Most can be viewed in their entirety on
the screen which makes it easier to carry out changes.

Should you wish to add more colour to a program, all you have
to do is insert after SCREEN 12 a new line:

COLORN
where N is a number in the range 0 to 15. Colours 8 to 15 are
high intensity versions of colours 0 to 7, and the available
colours are:

0 black 8 grey

1 blue 9 light blue

2 green 10 light green

3 cyan 11 light cyan

4 red 12 light red

5 magenta 13 light magenta
6 brown 14 yellow

7 white 15 bright white

Computers work in radians rather than degrees and the
programs make extensive use of 2n radians which is equivalent
to 360°. At times slightly more or less than 2w is needed, which
is why you might find other values such as 6.29 or 6.28 being
used instead.

Numeric variables are assigned in the same way throughout
most of the programs as follows:
Co-ordinates
Groups of co-ordinates

A, Dand XY
JJK, L, Mand P Q, R, 8§

Circles B
Cusps C
Focus F
Inputs N,V

General purpose G,H,T.

Inputs have been kept to a minimum but, if you want, they can
be reduced further. For example, you could try replacing a line
such as INPUT “IHow many points”; V by V = 36.

When you run the Epicycloid program, the end points of the
chords are displayed down the left-hand side of the screen. To
eliminate these numbers, do not type out the 9th to 11th lines
of the program. In the same way, the starting points of the
secants in the Hypocycloid program will not appear if you leave
out lines 12 to 14. In the Spirals program you can omit the 15th
line to suppress the numbers,

After you have run your program, the message ‘Press any key to
continue’ appears at the bottom of the screen. If you want, you
can print it in black and thus render it invisible by typing
COLOR 0 under the last line of the program.

QBASIC was supplied as standard on most personal computer
systems. With Windows 95, click on Start, then Programs, then
Windows Explorer. Now click on DOS on the left and scroll
through the files on the right until you see QBASIC, and click it
on. Alternatively, after clicking on Programs, click on MS-DOS
Prompt. When CAWINDOWS> appears, type QBASIC. After
Windows 95 QBASIC was not provided within Windows, but it
can be freely downloaded from sites such as
www.petesgbsite.com and is easy to install and use as a free
standing program.
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1.

Parabolas in a polygon

Choose the number of sides
Choose the number of steps per side

REM Parabolas in a polygon
SCREEN 12

X=370:Y =230

INPUT “How many sides”; V
INPUT “And steps per side”; N
P=2%3141593/V

FORB =0TO 6.28 STEP P
G=B+P

K=B+2%P
FORH=Y/NTOY +1STEPY/N
T=Y-H

A =T*SIN(B) + H * SIN(G)

D =T* COS(B) + H * COS(G)
C=T*SIN(G) + H * SIN(K)

F =T = COS(G) + H * COS(K)
LINE(X + A, Y-D)-(X+C,Y-F)
NEXT H, B

2. Parabolas in six polygons

REM Parabolas in six polygons
SCREEN 12

R=100

INPUT “How many sides to start with”; V
FORY =130 TO 350 STEP 220
FOR X =100TO 536 STEP 218
P=2%3.141593/V
FORB=0TO 6.28 STEP P
G=B+P

K=B+2*P
FORH=0TO 90 STEP10
T=R-H

A =T *SIN(B) + H * SIN(G)

D =T * COS(B) + H * COS(G)
C=T*SIN(G) + H * SINCK)

F =T * COS(G) + H * COS(K)
LINE(X+A,Y-D)-(X+C,Y-F)
NEXT H, B

V=V+1

NEXT X, Y
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3. Parabolic star

Choose the number of points
Choose the number of steps per line

REM Parabolic star

SCREEN 12

X=370:Y =230

INPUT “How eany points™; V
INPUT “And steps per line”; N
P=2%3141593/V

FOR B = 0 TO 6.28 STEP P

G=B*P

FORH=Y/NTOY +1STEPY /N
T=Y-H

PSET (X + T * SIN(B), Y = T * COS(B)) LINE (X + H
* SIN(G), Y - H * COS(G)) NEXT H, B

4. Six parabolic stars

REM Six parabolic stars

SCREEN 12

R=100

INPUT “How many points to start with”; vV
FOR Y =130 TO 350 STEP 220

FOR X =100 TO 536 STEP 218
P=2%3.141593/V

FOR B = 0 TO 6.28 STEP P

G=B+P

FORH=0TO90STEP 10

T=R-H

PSET (X + T * SIN(B), Y - T * COS(B))
LINE —(X + H * SIN(G), Y - H * COS(G))
NEXT H, B

V=V+1

NEXT X, Y
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5. Curves in a circle

Choose the number of sectors
Choose the number of points per sector

REM Curves in a circle

SCREEN 12

X=370:Y =230

INPUT “How many sectors”; Vv
PRINT “And points on circle”
PRINT “- multiple of”; V;: INPUT N
CIRCLE O, Y), Y, 12
P=2%x3.141593/V

FORB=0TO0 6.28 STEP P
FORH=BTOP + B STEP 6.283 /N
T=Y*(H-B)/P

PSET (X + T * SIN(B), Y - T * COS(B))
LINE = (X + Y * SIN(H), Y - Y * COS(H))
NEXT H, B

6. Curves in six circles

RGO
" Lo,
St

REM Curves in six circles SCREEN 12
R=100

INPUT “How many sectors to start with”; v
FOR Y =127 TO 347 STEP 220

FOR X =100 TO 536 STEP 218

CIRCLE (X, Y), R, 12
P=2%3141593/V

FOR B =0TO 6.28 STEP P
FORH=BTOP+BSTEP 6.283 /(12%V)
T=R*(H-B)/P

PSET (X + T % SIN(B), ¥ - T * COS(B))
LINE -(X + R * SIN(H), Y - R * COS(H))
NEXT H, B

V=V+1

NEXT X, Y
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7. Eight parabolas in a square

Choose the number of steps

REM Eight parabolas in a square SCREEN 12
X=370:Y=230

PRINT “How many steps”

INPUT “per line™; V

FORH=0TOY +1STEPY /V
FORT=-1TO1 STEP 2

FORG=-1TO1 STEP 2

FORR=0TO1

PSET(X+H*T,Y*(1 +G*R))
LINE-(X+¥*T=*R, Y*(1 +G)-H*G)
NEXTR, G, T, H

8. Parabola design

Choose random or your own numbers

REM Parabola design T
SCREEN 12: RANDOMIZE TIMER e
X=640:Y=410:V=30:6=0

INPUT “Enter R for Random or | for Input », T$

Do

J = INT(RND * X): K = INT(RND * Y) + SO

L = INT(RND * X): M = INT(RND * Y) + 50

P = INTCRND * X): Q = INT(RND * Y) + 50

R = INT(RND * X): S = INT(RND * Y) + 50

IF T$ = “I” THEN

PRINT “Max: 639 for x and 479 for y”

INPUT “Start of Line 1 (x,¥)7;J, K

INPUT “End of Line 1 (x,y)”;L, M

INPUT “Start of Line 2 (x,y)”; P, Q

INPUT “End of Line 2 (x,y)";R, S

INPUT “How many steps per line”; V

END IF

DO:CLS:G=1-G

PRINT “Press E for Exit, N for New and any other Kkey to reverse”
PRINT J; ","; K; “="; L; ",""; M; SPC(9); P; ,"; Q; “~"; R; "/"; S
FORN=0TO1.001 STEP1 /V
PSET(L-N*(L-1), M -N*(M-K))
A=N*(R-PEB=N*(5-0Q)

IF G THEN LINE —(R - A, S - B) ELSE LINE —(P + A, Q + B)
NEXT N: LINE (J, K)-(L, M), 12: LINE (P, Q)-(R, 5),12

A$ > INPUTS(1): LOOP UNTIL A$ = “E” OR A$ = “N”: LOOP UNTIL A% = “E”
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9. Ellipse from inverses

Choose the width
Choose the height

10. Ellipse from chords

Choose the focus

REM Ellipse from inverses

INPUT “Enter width (638 max)”, V
INPUT “And height (460 max)”, N
SCREEN 12

X=320:Y=230
FORT=-V/2TOV/2STEPV
LINE(X +T,0)=(X+T,2*Y)
FORH=-10TO 10
PSET(X+T,Y+N*H/20)
IFHTHEN LINE =(X-T,Y +5*N /H)
NEXTH, T

PRINT “Width == ; V

PRINT “Height = *; N

REM Ellipse from chords

SCREEN 12

X =350:Y =230:3=0

INPUT “Enter focus (50 - 200)*, F

CIRCLE (X, Y), Y, 12

LOCATE 15,1800 / F + 8: PRINT “.”

Pl = 3.141593

FORB=0TOPI /4 STEPPI /120
IFG<PITHENG=G+BELSE6=6G+31 =Pl /
120-8B

R=F*SIN(G) /SQR(Y 2+ FA2-2%Y®F*
COS(G))

T=G+2*ATN(R /SQR(1 - (R *R)))

PSET (X +Y * COS(G), Y + Y * SIN(G))

LINE -(X + Y * COS(T), Y + Y * SIN(T))

NEXT B
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11. Ellipse from circles 12. Hyperbola

Choose the number of points Choose the focus

REM Ellipse from circles
SCREEN 12
X=320:Y=230:R =220
INPUT “How many circles”; Vv
I=2%R/(V+1)
LINE(X-R,Y)-(X+R,Y), 4
FORA=X-R+ZTOX+R-Z+1STEPZ
H=SQR(RA2-(X-A)*2)
LINE (A, Y - H)-(A, Y + H),12
CIRCLE (A, Y), H

NEXT A

CIRCLE (X, Y),R,12

REM Hyperbola

INPUT “How many points? (Even)”, vV
INPUT “Enter the focus (150 - 650)”, F
SCREEN 12

X=320:Y =235:R=140

CIRCLE (X, Y), R, 12

LOCATE 15, 4000 / F — 5: PRINT “.”

H = ATN(R / SQR(F * F - R * R))
G=2%(3.141593+ 2% H) /(V-2)
FORB=-HTOH+ 3.15STEP G

A =R * SIN(B)

D = R % COS(B)

T=3*R * SGN(D)
K=A+T*D/(F+A)

LINEX + A, Y+D)-(X+K,Y+D-T)
LINEX-AY-D)-(X-K,Y-D+T)
NEXT B

PRINT “Focus”; F

PRINT V; “points”
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13. Curve of pursuit
Choose the length of step

REM Curve of pursuit
SCREEN 12

X =600:Y = 460

A=50:D=Y

INPUT “Length of step? (200 max)”, L
FORN=YTO O STEP -L

LINE (A, D)-(X, N)
H=5QR((X-A)*2+(N-D)~2)
A=A+L*(X-A)/H
D=D+L*(N-D)/H

NEXT N

LINE -(X, Y)

14. Curves of pursuit in a circle

Choose the number of sectors
Choose the number of points per sector

REM Curves of pursuit in a circle
SCREEN 12

X=360:Y=230

INPUT “How many sectors”;V
PRINT “And points on circle”
PRINT “~ multiple of*; V; : INPUT N
CIRCLE (X, Y), Y, 12

Pl = 3.141593

L=2%Y*PI/N
FORB=-PITOPISTEP2* Pl /V
A=0:D=0
FORT=6.29/V+BTOBSTEP -2 %Pl /N
C =Y *SINCT):F =Y = COS(T)
LINE(X+A, Y+D)-(X+(C, Y+F)
H=SQR({(C-A)A2+(F-D)*2)
A=A+L*(C-A)H
D=D+L*F-D)H

NEXTT, B
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15. Tractrix

Choose the length of step
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REM Tractrix

SCREEN 12

X =600:Y =460
A=0:D=Y:C=50:K=X-C
INPUT “Length of step? (87 max)”, L
FORN=1TO174/L+1
H=SQR(2*K=*A-A*A)
LINE (A + C, D)-(X, D - H)
A=A+L*(K=-A)/K
D=D-L*H/K

NEXT N

LINE -(X, Y)

16. Equal chords

Choose the number of points
Choose the number of steps

REM Equal chords

SCREEN 12

X=320:Y=230

INPUT “How many points”; V
CIRCLE (X, ¥}, Y, 12

FORT=5T06

COLORT

INPUT “And steps™; N
P=2%3.141593/V

FOR B = 0 TO 6.28 STEP P
H=B+P=*N

PSET (X + Y * SIN(B), Y - Y * COS(B))
LINE =(X +Y = SIN(H), Y - Y * COS(H))
NEXTB, T
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17. Decreasing chords

Choose the number of points

REM Decreasing chords

SCREEN 12

R=70

INPUT “How many points”;V
N=INT(V/2)+1

FOR Y = 90 TO 390 STEP 150

FOR X = 80 TO 560 STEP 160
IFN=1THEN END ELSEN=N -1
LOCATE 1, 26: PRINT “Steps:”; N
CIRCLE (X, Y), R, 12

P=2%3141593 /V

FORB =0TO 6.28 STEP P
H=B+P*N

PSET (X + R * SIN(B), Y - R * COS(B))
LINE =(X + R * SIN(H), Y - R * COS(H))
NEXT B, X, Y

18. Mystic rose

Choosc the number of points

REM Mystic rose

SCREEN 12

X =320:Y =230

INPUT “How many points”; V
P=2%3141593/V

FORB =P TO 6.28 STEP P

FORH =B + P T0 6.29 STEP P

PSET (X + Y * SIN(B), Y - Y * COS(B))
LINE =(X + Y * SIN(H), Y - Y * COS(H))
NEXTH, B
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19. Six mystic roses

Choose the least number of points
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REM Six Mystic roses

SCREEN 12

R=100

INPUT “How many points to start with”; Vv
FOR Y = 127 TO 347 STEP 220

FOR X = 100 TO 536 STEP 218
P=2%3141593/V

FOR B = P TO 6.28 STEP P

FORH=B +PTO 6.29 STEP P

PSET (X + R * SIN(B), Y - R * COS(B))
LINE =(X + R * SIN(H), Y - R * COS(H))
NEXTH, B

V=V+1

NEXT X, Y

20. Concentric circles

Choose clockwise or anti-clockwise
Choose the points’ ratio of the circles

REM Concentric circles

SCREEN 12

X=400:Y=242:R=110

INPUT “Enter 1 for clockwise or 0 for
anticlockwise”, V

INPUT “Paints’ ratio outer/inner circle”; N
CIRCLE (X, Y),R, 12

CIRCLE (X, Y), 2*R,12

FOR B = 0T0 6.28 STEP 3.141593 / {12 * N)
IFVTHENH=N*BELSEH=-N*B

PSET (X + 2 * R * SIN(B), Y - 2 * R * COS(B))
LINE -(X + R * SIN(H), Y — R * COS(H))

NEXT B
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21. Two linked circles

Choose the number of points on each circle
Choose the number of steps

REM Two Linked circles

SCREEN 12

L=220:G=420:Y = 240: R = 200
INPUT “How many points per circle”; V
INPUT “And how many steps”; N
CIRCLE (L, Y), R, 12

CIRCLE (G, Y), R, 12
P=2%3141593/V

FORB =0 TO 6.28 STEP P

H=B+P*N

PSET (L + R * SIN(B), Y - R * COS(B))
LINE -(G + R * SIN(H), Y - R * COS(H))
NEXT B

22. Three linked circles

Choose the number of points on each circle
Choose the number of steps

REM Three linked circles

SCREEN12
L=220:G=420:U=320:Y=313:K=140:R =
125

INPUT “*How many points per circle”; V
INPUT “And how many steps”; N
CIRCLE (L, Y),R, 12

CIRCLE (G, Y), R, 12

CIRCLE (U, K), R, 12

P=2%3141593/V

FOR B = 0 TO 6.28 STEP P

H=B+P*N

T=B+2%Px*N

PSET (G + R » SIN(B), Y - R = COS(B))
LINE =(U + R * SIN(H), K - R * COS(H))
LINE =(L + R * SINCT), Y - R * COS(T))
LINE ~(G + R * SIN(B), Y - R % COS(B))
NEXT B
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23. Envelope of a roulette

Choose epicycloid or hypocyloid
Choose the number of cusps

REM Envelope of a roulette

SCREEN 12

X=370:Y=230

PRINT “Enter 1 for Epicycloid”

INPUT “or 0 for Hypocyclold”, N

INPUT “How many cusps™; V
K=V/2+2%N

G=Y/K

CIRCLE(X,Y),Y=-2%G*N,12

Pl = 3.141593

FOR B = 0 TO 6.28 STEP P1 / (9 * K)
H=2*Pl*(1 -N)-¢1 -2*N)*(B*K~-B)
T=H+Pl

A = (Y - G) * SIN(B)

D = (Y - G) * COS(B)

PSET (X + A + G * SINCH), Y - D - G * COS(H))
LINE =(X + A + G * SIN(T), Y - D - G * COS(T))
NEXT B

24. Outline of a roulette

REM Outline of a roulette

SCREEN 12

X =370:Y =230

PRINT “Enter 1 for Epicycloid”

INPUT “or 0 for Hypocycloid ¥, N:N -2 *N
INPUT “How many cusps™; ¥V

DO: IF N = 0 THEN PRINT “Hake turns Less than”;
V'

INPUT “And how many turns”; T

LOOP UNTILNORN=0ANDV>T
F=Y/(V/T+N)

G=F*{(V/T+N-1)
H=3.141593/(12*(V+ N} /TA(1 -3 *N/8))
PSET(X,Y=-G—-(1 -N)*F)

FORB=HT0®6.28 *TSTEPH
A-G*SIN(B) - F*SIN(B*G/F)
D*G*COS(B)+ (1 —N)*F*COS(B*G/F)
LINE=(X+A,Y-D)

NEXT B

25. Numbering of a roulette

REM Numbering of a roulette
PRINT “Enter 1 for Epicycloid”
INPUT “or 0 for Hypocycloid”, N
INPUT “How many cusps”; V
INPUT “and points on circle”; T
IFNTHENK=V+1 ELSEK"V -1
SCREEN 12

FORB=0TOT-1
H=N+(K=*(B+1)-N)YMODT
LOCATE B MOD 28 +1,12%(B\28) +1
IFN=1THENPRINTB +1;" ";H
IFN=0THENPRINTT-H;" ";B+1
NEXT B
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26. Epicycloid

Choose the number of cusps
Choose the number of points on the circle

REM Epicycloid

SCREEN 12

X=400:Y =230:T=0

INPUT “How Many cusps”; V

PRINT “And points on circle”

PRINT “~ multiple of*; V;: INPUT N
CIRCLE (X, Y), Y, 12

FORB = 0 TO 6.28 STEP 2 * 3.141593 /N
LOCATE TMOD 24 + 5,4 % (T\ 24) + 1
PRINT1 + (V*T+V+T)MODN
T-T*1

H»B*{V+1)

PSET (X + Y * SIN(B), Y - Y * COS(B))
LINE =(X + Y * SIN(H), Y - Y * COS(H))
NEXT B

27. Six epicycloids

v A

=0

REM Six epicycloids

SCREEN 12

R=100

INPUT “How many cusps to start with”;V
FOR Y =127 TO 347 STEP 220

FOR X =100TO 536 STEP 218

CIRCLE (X, Y),R,12

FORB =0T0 6.28 STEP 3.141593 /(16 % V)
H=B*(V+1)

PSET (X + R * SIN(B), Y - R * COS(B})

LINE -(X + R * SIN(H), Y - R * COS(H))
NEXT B

V=V=+1

NEXT X, Y
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28. Cardioid from circles

REM Cardioid from circles

SCREEN 12

X=360:Y=160:R=100

INPUT “How many circles”; V

P=2%3141593/(V+1)

FORT=PTOV*P+.001 STEP P

A =R *SIN(T)

D = R * COS(T)
H=SQR(AA2+(R-D)*2)

CIRCLE (X + A,Y~D), H

NEXT T

CIRCLE (X, Y),R,12

29. Nephroid from circles

REM Nephroid from circles
SCREEN 12
X=320:Y=240:R=150

INPUT “How many circles each side”; V
P=3.141593/(V+1)
FORT=PTOV *P +.001 STEP P
A=R*SIN(T)

D =R * COS(T)
CIRCLE(X+A,Y-D), A
CIRCLE(X-A,Y-D),A

NEXTT

CIRCLE (X, Y),R,12
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30. Cycloid

Choose the number of arches
Choose the number of steps per arch

REM Cycloid

SCREEN 12

X=200:Y =230

INPUT “How many arches”; V
INPUT “And steps per arch”; N
T=X/V

Pl = 3.141593
FORB=0TO3.15*VSTEPPI /N
H=B+PI

K=T*B

PSET (K + T * SIN(B), Y = T * COS(B))
LINE =(K + T * SINCH), Y =~ T % COS(H))
NEXT B

31. Hypocycloid

Choose the number of cusps

Choose the number of points per cusp

REM Hypocycloid

SCREEN 12 I
X=406:Y=184:R=90:T=0

INPUT “How many cusps? (3 minimum)”, vV
PRINT “And points on circle”

PRINT “= multiple of”; V; : INPUT N
CIRCLE (X, Y), R, 12

Pl = 3.141593

FORB =0TO6.28 STEP2*PI /V
G=B+Pl/V
FORH=BT06.29/V+BSTEP2*PI/N
LOCATETMOD 24 + 5,4 % (T\ 24) + 1
PRINTN-(V-1)*(T+1)MODN
IFT<N-TTHENT=T+1
J=-H*((V-1)

H=COS(H*V/2-H+G)
L=R*COS(-H*V/2)/(M-(M=0)
IF ABS(M) < .00001 THENL=R*V /(V-2)
PSET (X + R * SIN(J), Y - R * COS(J))
LINE -(X + L * SIN(G), Y - L * COS(G))
NEXT H, B
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32. Six hypocycloids

REM Six hypocycloids

SCREEN 12

R=50

INPUT “How many cusps to start with? (3
minimum)”, V

FOR Y =120 TQ 360 STEP 240

FOR X =130 TO 554 STEP 212
P=3.141593/V

FORB=0TO 6.28 STEP2 =P

G=B+P
FORH=BTO2*P+BSTEPP/6
J==-H=®(V-1)
M=COS(H*V/2-H+G)
L=R*COS(-H*V/2)/(M-(M=0))
IF ABS(M) < .00001 THENL=R*V/(V-2)
PSET (X + R * SIN(J), Y - R * C0S5(J))
LINE =(X + L * SIN(G), Y — L * COS(G))
NEXTH, B

V=V=+1

CIRCLE (X, Y), R, 12

NEXT X, Y

33. Astroid

Choose the number of steps

REM Astroid

SCREEN 12

X=320:Y =230

INPUT “How many steps”; V
Do

COLOR INT(RND * 15) + 1
FORN=0TOYSTEPY /V
H=SQR(Y~2-N~2)
LINE (X + N, Y)=(X, Y + H)
LINE -(X - N, Y)

LINE ~(X, Y - H)

LINE =(X + N, Y)

NEXT N
LINE(X-Y,Y)-(X+Y,Y)
FOR K = 1 TO 5000: NEXT K
LOOP WHILE INKEYS = """
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34. Four curves

Parabola Pursuit

far
/J',-"I-'

REM Four curves

SCREEN 12

LOCATE 3, 5: PRINT “Parabola”
X=250:Y=450:C=50:K=X=-C:L=20
FORN=CTO X STEP L

LINE (N, K)-(X, X - N)

NEXT N

LOCATE 20, 5: PRINT “1/4 Astroid”

FORN = KTO 0 STEP -L
LINE(X-N,Y)-(X,Y-SQR(K~A2-N~A2)
NEXT N

LOCATE 3, 45: PRINT “Pursuit Curve”
X=600:Y=200:A=400:D=Y
FORN=YTO 0 STEP -L

LINE (A, D)-(X, N)
H=SQRUX-AY*2+(N-A)*2)
A=A+L*(X-A)/H:D=D+L*(N-D)/H
NEXT N: LINE —(X, Y)

LOCATE 20, 45: PRINT “Tractrix”
Y=450:C=400:K=X~-CA=0:D=Y:L=10
FORN=1TO10:H=SQR(C*A-A*A)
LINE (C+ A, D)-(X, D - H)
A=zA+L*(K-A)/K:D=D-L*H/K
NEXT N: LINE (X, Y)

REM Spiral

SCREEN 12

X=414:Y =230

INPUT “Enter 1 for Archimedian or 0 for
Equiangular”, N

INPUT “Enter length of radial line (mm)”, R
INPUT “Enter angle (5 - 45)", V

DO: PRINT “How many turns - less than”; V;:
INPUTT

LOOPUNTILT>0ANDT<V

DO: INPUT “Initial distance from centre”; H
LOOP UNTILNORN=0ANDH>0
J=360%*T/V
IFNTHENG=(R-H)/JELSEG=(R/H)~A(1/))
PSET(X,Y -225*H/R)

FORL=0TO)J

LOCATE L MOD 24 + 6, 3 * (L \ 24) + 1: PRINT
CINT(H);

K=225*H/R

B=L*»V*3.141593 /180

LINE —=(X + K * SIN(B), Y — K * COS(B))
IFNTHENH=H+GELSEH=H*G

NEXT L
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Proofs and Demonstrations

ax2 + 2hxy

+ by2 + 2gx

+ 2y + ¢

74

In the earlier chapters of this book, the sewing rules for each pattern or
curve were presented simply as rules to follow. By following the instructions
accurately, the desired curve was generated. In this chapter the intention is
to go further and to prove that each rule does in fact generate the curve in
question. It is easy enough to recognise a circle, but we need to know, for
instance, that a “parabola” is in fact a true parabola and not some curve
which is just “parabola-like”,

Each stitch that is sewn is a straight line, and the patterns can be regarded as
the successive positions of a line moving as it obeys certain mathematical
rules. The curve which is traced out is known as an envelope and each stitch
only contributes a small portion to it. In theory it only contributes a single
point, the point of contact between the tangent and the curve. This point of
contact may move along the line as the line itself moves. 'lo find the locus of
the point which traces out the envelope as the line moves according to
different rules demands a variety of techniques.

A general theory of curve stitching requires a general theory of envelopes and
much work with partial differentiation. Having obtained an algebraic equation
for the envelope, there remains the difficulty of recognising exactly what it
represents. Even simple curves like circles and parabolas are hard to recognise
in general algebraic form. There are of course tests which can be applied to
determine with certainty exactly what type of curve a particular equation
represents, and some readers may find a great deal of interest and enjoyment in
such work. However it is not really appropriate for a book of this level and we
shall take a more specific approach. We shall attempt to find some particular
property of a curve, or some particularly convenient set of co-ordinates which
will enable us to prove that the curve is indeed the one we say it is.

Sewing a parabola

Let us begin by proving the standard construction which we have used for
parabolas in many different patterns earlier in the book. The standard
method was to mark along one axis OP the same number of equal divisions
as along another axis OQ. Then each stitch was sewn between points A on
OP and B on OQ chosen so that A was as many divisions in from P as B was
from O. The equal divisions on one axis do not have to be the same length
as the equal divisions on the other.

This proportional relationship is true when the standard construction is
followed:

OA _BQ

OP ~ 0Q
We now need to prove that if this proportional relationship is true, then
every possible position of AB is a tangent to the same parabola.
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Let us use the simplest algebraic form of the parabola which is y2 = 4ax. For
it to be expressed in this form the x-axis has to be the axis of symmetry and
the y-axis tangential to the parabola. The focus is then F(a, O). Points on the
parabola can be expressed in parametric form.

Let us consider two tangents at P(ap2, 2ap) and Qaq?, 2aq) meeting at O,
which we will now prove is the point (apq, a{p+q)).

The equation of OP is py = x + ap2 and of OQ is qy = x + aq?

Soy=%X+ap and y =%+ aq
p q

Giving *-%*=aq-ap
P 9q

Therefore x = apg
Substituting this value in py = x + ap? produces y = a(p + q).
Likewise if AB is a tangent to the parabola at R (arz, 2ar),
then A is (apr, a(p + 1)) and B is (aqr, a(q+r)).

We can now find both ratios using the x co-ordinates only.

OA _ apr-apq _ r—q
oPp ap*-apq  p-q

BQ _ ag*-apr _ q-r
oQ ap® —apq q-p
OA _ BQ
OFP 0Q

Therefore it is true that

and so the tangent to the parabola does divide the axes in the same way as the
stitches are sewn using the standard construction. It also shows that if there are
(say) 10 divisions on each axis, then the parabola touches each axis at the 11th.

Curves which are parabola-like

Once the basic construction of the parabola is mastered and some simple
patterns have been sewn, there is a natural inclination to apply the same
technique to different starting situations. This can be a most creative activity and
the number of beautiful designs which can be produced is virtually limitless.
From a strictly mathematical viewpoint it is best to be aware that the curves
which are generated are ‘parabola-like’, rather than true parabolas. Only if the
proportion rule given opposite is true does the procedure give a parabola.

This illustration, which is reproduced in colour on page 35, shows the kind
of pattern which can be sewn. The proportion rule is not obeyed, but eight
of these ‘pseudo-parabolas’ do combine very attractively to give a ‘four
leaved clover’ design within a circle.
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Equal chords of a circle

Several of the curve stitching patterns make use of equal chords of a circle to
generate another smaller concentric circle. It is easy to see why this is true.

For all chords
OM2 = a2 — b2
where a is the radius of the circle and b is half the length of the chord.

Hence OM is always the same length for equal chords and thus M lies on a
circle centre O. M is the point of contact between the tangent AB on the
envelope it traces out.

Some equal chord patterns are what is called unicursal, which means they
can be drawn without lifting the pencil from the paper, as long as the
number of points on the circle and the number of steps around the circle
are relatively prime, meaning that they have no common factor. For the
purpose of curve stitching in the usual way this property has no significance
but if, however, instead of holes through the card, the points were evelets
on the surface or nails knocked into a base board, then those designs which
are unicursal could be made with a single piece of thread or wire.

The pattern in six colours

On page 23 there is an equal chord pattern, sewn in six colours. This table
shows which points to join to obtain it.

GREEN RED YELLOW MAUVE CYAN ORANGE
20 - 29 knot 27 - 36 14 — 5 knot 3 - 30 26 - 17 knot 15 - 6
19 - 28 28 - 1 13 - 4 4 - 31 25 - 16 16 - 7
18 - 27 29 - 2 1z - 3 5 - 32 24 - 15 17 - 8
20 - 11 2 - 306 14 — 23 21 - 30 26 - 35 33 - 6
19 - 10 10 - 1 13 - 22 22 - 31 25 - 34 34 — 7
18 = 9 knot 11 - 2 12 - 21 knot 3 - 32 24 - 33 knot 35 - 8

The shading indicates those stitches which are on the back of the card.
Complete all the stitches in one colour before knotting it to the other colour
of the pair. Red and green are knotted together twice as are yellow and
mauve and then cyan and orange.
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Mystic roses

A mystic rose is the name given to patterns which are made where the
circumference of a circle is marked into equal divisions and then all the
points are joined to all the others.

POINTS 2 3 4 5 6 7 8 9 10 n
DIAGONALS 1 3 6 10 15 21 28 36 45 Lon(n-l)
REGIONS 2 4 8 16 30

Sewing these kinds of patterns may well stimulate an interest in drawing
mystic roses and in investigating their properties. They make an interesting
topic for investigation because while the number of diagonals is clearly
related to the number of points the number of regions is not. For mystic
roses of 2, 3, 4, 5 points, the number of regions is 2, 4, 8, 16 respectively
and a clear pattern appears to be established. However this is upset by the
fact that a mystic rose of 6 points divides the circle into 30 regions, not 32.
Further work is needed.

An ellipse from inverses

The pattern on page 39 generates an ellipse from two parallel lines simply
by joining each number on one line to its inverse on another. To prove that
this is truly an ellipse is not difficult.

If an ellipse is referred to its major and minor axes as axes of co-ordinates,
its equation is
2 72
o T o=l
a? b?
The tangents at the ends of the major axis are then x = a and x = - a.

There are two tangents to an ellipse with the same gradient, one each side
of the centre. If the gradient is m, the equations are

y=mx + /a'm?+ b? and y=mx- va’m?+ b?
whenx=a 7y, = am +/22m?+b? and y,=am- va’m? + b2z
whenx = -a y,=-am + v2’m?+ b? and  y, = -am - /a’m?+ b?
hence y,y, = a2m? + (b?-a’m?) and y.y, = a’m? + (b*-a’*m?)

= h? = p?

The product of the distances from the x axis is b2. If b is chosen to be 1,
then the points to join are inverses.

This is exactly the curve stitching method which is used to generate the ellipse.
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An ellipse from chords

The method on page 40 which generated an cllipse by using a set-square in
a circle is also not difficult to prove, this time using elementary geometry.

Suppose the circle has radius r and that AE is a diameter. The points B and
D which are to be the foci of the ellipse are equally spaced from A and E
respectively. Let us imagine a rectangle RSTU on the circle so that the sides
TS and UR pass through B and D. Then TR passes through C, the centre of
the circle.

Produce ST to V so that BT = TV, Join VD to intersect TU at W, Join BW/

Since VT is equal and parallel to DR, VDRT is a parallelogram, so VD = IR =
2r. The triangles BWT and VWT are congruent and so BW = WV

Hence BW + WD = VW + WD =VD =TR = 2r.

This is the well known focal property of the ellipse.

This curve stitching construction means that the sewn stitches are the sides
TU of the rectangles which pass through B and D. On each position of TU
there is a single point W which lies on the ellipse. W is therefore the point of
contact of the tangent with the ellipse and therefore lies on the envelope.

Epicycloids - the cardioid

The pattern on page 44 illustrates the envelope of a cardioid. It was
generated by sewing between each point and its double around the circle.
There was also an explanation that a cardioid is the path traced out by a
point on a circle as it rolls around another circle with the same radius. We
now need to prove that these two different points of view are in fact
different descriptions of the same curve.

Let us find the position of a point P on the cardioid.

A point on the circumference of the rolling circle will have turned through
200 as ON turns through a. The position of the point P can be described by
the length of OP and the angle (o + 6).

NM = r cos o, PM = r sin 0.
OP2 = QM2 + PM2
= (2r + r cos )2 + (r sin )2
= 512 412 cos o
Also sin § = PM rsin o
OP op




Now let us look at the problem from a curve stitching point of view.

Cach stitch joins two points, one of which is twice as far around the circle from .
this starting point as the other. If T is the starting point and TOS is a, then
TOQ is 2a. We need to show that there is a single point P on SQ which
contributes to the cardioid. We test the point P which is one third of the way
along SQ. If the choice of one third seems arbitrary, we say that it was
suggested by the fact that the cusp of the cardioid is one third of the way along
the diameter.

Since the radius of the sewing circle is 3r, the length of SR = 3r sin% and PR =r sin%
OP? = OR? + PR?

3r cos¥)z + r sin$)?
( 2) ( 2)

Il

r’+ 8r? cos? %

2+ 4r? (1 + cos o)
= 512 4+ 412 cos o

Since PU = SP cos %, we have

5 . O o

2r smz cosz .
Sin 6 = = Lsng
OoP OP

Hence the point P obtained by this method is the same point P as that obtained
by the other method. This confirms that the method of curve stitching which is
given on page 44 does produce the envelope of a cardioid.

The reader might now care to prove the similar results for the nephroid on
page 45, where P is one quarter of the way along SQ, and for the epicycloid of
Cremona on page 46 where P is one fifth of the way along SQ. In each case
find the length of OP and the angle © by both methods.

Hypocycloids — the deltoid

On page 48 there is a pattern which generates the envelope of a deltoid by
sewing between pairs of points, one on a circle and one on a line leading to the
cusp. Each stitch joins a point to another point which is twice as far round the
circle, but in the oppaosite direction. Unlike the epicycloids where both end-
points lie on the circle, each stitch is sewn through one point and then passes
over the other, forming the envelope outside the initial circle. There is also a
diagram which shows that a deltoid is the path traced out by a point on the
circumference of a circle as it rolls around the inside of a circle with three times
the radius. We now need to show that these two different points of view are in
fact describing the same curve.
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Let us find the position of a point P on the deltoid.

P is a point on the circumference of the rolling circle. As ON rotates
clockwise through a, PN rotates anticlockwise through 2c. The position of P
can be described by the length of OP and the angle ¢ + 6.

PM = rsin 3¢, OM = 2r + r cos (180 - 3¢) = 2r —r cos 30
OP? = PM? + OM?

= (rsin 30)? + (2r — r cos 300)?

= 5r% — 4r? cos 30?2

; PM r sin 3¢

Alsosin® ="—"—= ~" "=~

or oP

Now let us look at the problem from a curve stitching point of view. Each
stitch joins two points, one of which is twice as far around the circle as the
starting point, but in the opposite direction. If T is the starting point and
TOQ is ¢, then TOS = 2a.

We need to show that there is a single point P on SQ produced which
contributes to the deltoid. We test the point P which is such that PQ = S,
suggested by the fact that the cusp of the deltoid extends beyond the inner
circle by the length of that circle’s diameter.

OU = r cos 2%, UP = 3¢ sin 2%
2 2
OP? = OUZ + UP?

(r cos 5;)2 + (3r sin‘%t)2

r? + 8r? sin? 3?&

2 + 412 (1 - cos 300)

= 5r? — 4r? cos 30
To find an expression for g, we describe the area of the triangle OQP in two
different ways.

PQ = 8Q = 2rsin 52&

1or OP sin 8 = 12 PQ. OU = Y2 2r sin—32qcos 32“
therefore sin = £330
OP

Hence the point P which is obtained by this method is the same point as that
obtained by the first method. This confirms that the curve stitching method
on page 48 does generate the envelope of a deltoid.

The reader might care to prove similar results for the astroid on page 50 where
PQ = 1/2 SQ and for the six-cusped hypocycloid on page 52 where PQ = 1/4
SQ. In each case find the length of OP and the angle 8 by both methods.



The Astroid

On page 51 there is a very simple method of sewing an astroid which seems to’
have no connection with that shown on page 50 or indeed with the fact that it
is a hypocycloid. The method suggested is to sew a series of stitches of
constant length so that their ends lie on a pair of straight lines at right angles
to each other. This can be described as the “sliding ladder” problem. To prove
it is fortunately a simple exercise in elementary geometry.

Points S, T and Q are on a circle of radius r. If Q is rotated a clockwise from T,
then § is rotated through 3a anticlockwise from T the chord SQ meets lines
through O which are at 45° to the line O at points A and B.

S0OQ is an isosceles triangle and hence SQO = 90 - 2o

QOB = 45° - 0. Hence QBO = 45° — o and thus OQB is isosceles.
Hence QB = QO =r.

QOA = 45° + o. Hence QAO = 45° + a and thus OQA is isosceles.
Hence QA= QO =r

Thus AB = AQ + QB = 2r which is independent of o.

This proves that the astroid is the envelope of lines of constant length with
their ends on two lines at right angles.

Stitching spirals

A spiral is a curve traced out by a moving point which systematically increases or
decreases its distance from a fixed point at the centre while turning round it.
There are two main types which can be sewn, Archimedian and equiangular. In
each case the stitches suggest the curve by means of consecutive line segments, a
quite different approach from the normal technique of curve stitching where
each stitch only contributes a small portion to the curve.

Archimedian spiral

An Archimedian spiral is one in which the radial distance increases in direct
proportion to the angle turned. A simple example of it is a coiled rope. In order
to sew an Archimedian spiral like the one illustrated here it is necessary to
measure and mark out on the back of the card every point which is to be sewn.
In this example there are 10 turns and 12 radii spaced at 30° intervals and it is
convenient to mark it out by first drawing 10 concentric circles with radii
increasing in steps of 6Gmm. Then at each radial line mark a point 1/2mm further
out. After 12 radii the spiral has moved out by 6mm and just reaches the next
concentric circle. Having pierced all the marked points, the thread is sewn in two
stages. Firstly from the outside alternately towards the centre and then back out
again filling the gaps. It is best to avoid those holes which would come within the
first circle as they are too close together. “Cheat” a little by joining the centre to a
point on the first circle with radius 6mm.
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Equiangular spiral

This spiral is so called because it cuts each of the radial lines at equal angles.
It is widely observed in nature, for instance the shell of a nautilus or other
molluscs. Flowers such as the daisy and sunflower have heads which contain
a series of intersecting equiangular spirals.

The diagram shows that each line segment of the spiral meets the next
radius at the same angle, forming a sequence of similar triangles of
increasing size.

Along each of the evenly spaced radii of an Archimedian spiral the points are
spaced as an arithmetic progression. Along each radius of an equiangular
spiral they are spaced as a geometric progression. The next distance is
obtained by multiplying the previous distance by a number which is called
the common ratio.

To sew the equiangular spiral in the illustration the common ratio was
chosen to be 1.035. The first three distances were 1, 1 x 1.035, and 1 x
(1.035)2, When all the distances are calculated and then measured out on
the back of the card, the holes can be picreed. It is sensible to round off
each distance to the nearest 1/2mm,

This table gives the calculation for 10 turns. The ones at the centre were so
close together that it was practicable to sew only the outer seven turns.

Distances in mm from the centre along each radial line.

360 1

30 1 1.5 2.5 35 355 8 12 18 275 41
60 1 1.5 2.5 35 55 8.5 12.5 19 285 425
90 1 1.5 2.5 4 3.5 8.5 13 195 295 44
120 1 1.5 2.5 A 6 9 135 20 305 455
150 1 2 2.5 4 6 9 14 21 31.5 475
180 1 2 3 4 6.5 9.5 145 215 325 49
210 1.5 2 3 45 6.5 10 15 225 335 505
240 1.5 2 ) 45 7 10 155 23 35 52.5
270 1.5 2 3 45 7 105 16 24 36 54
300 1.5 2 3 5 7 11 165 245 37 56
330 1.5 2 3.5 5 7:5 115 17 255 385 38
360 1.5 2.5 3.5 5 7.5 115 17.5 265 40 60

The sewing is done in two stages, from the outside alternately in towards
the centre and then back out again filling in the gaps.
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Working in three dimensions

Only a few lines of approach are suggested in this chapter as it would take at
least another book to cover the endless possibilities which are offered by three
dimensional curve stitching. The ideas on this page are essentially mathematical,
but on the pages which follow are some examples of how curve stitching can be
regarded as a branch of sculpture, interpreted by four well-known twentieth
century artists.

Some kind of framework is required which is strong enough to withstand the
tensions of the strings. For the very smallest designs, card may be sufficiently
rigid, but usually metal or wood is needed. Perforated strips of Meccano work
well and they can be bolted together into their required positions in space. For
small scale constructions button thread will suffice, but coloured wool or string
will show up better for anything larger.

Some constructions use what is essentially two dimensional curve stitching, but
repeated in several different planes. A simple example of this approach is the
“Parabola Tree” shown in Figure 1. A central upright pole is fixed to a base made
from cross-pieces. A standard parabola pattern is then sewn between the upright
and each of the cross-pieces. The stringing for each cross-piece then lies in a
single plane. The diagram shows four-cross pieces with only two having been
sewn, but there could be any number from three upwards.

A different approach is shown in Figure 2, where the strings are sewn between
two pairs of opposite sides of a tetrahedron. A fifth strut is needed to keep the
construction rigid. In this case the strings form a curved surface in three
dimensional space. Since all the strings are straight, such surfaces are known as
“ruled” surfaces. This one is called a hyperbolic paraboloid and is a shape which
has been used for roofs. The strings are replaced by straight iron reinforcing
rods, and the roof is then cast from concrete to cover them.

Figure 3 shows a framework which is in the form of a cube and there are many
different ways of sewing between the sides. The diagram shows the two
dimensional kind of envelope where the strings join adjacent sides and the
three dimensional kind of ruled surface where the strings join non-adjacent
sides.

Another approach is shown in Figure 4. The strings join the edges of two circles
which have been cut out of a pair of hinged cards, Button thread will do very
well as there is no need for it to be very large. Alternatively, try shirring elastic
and see how the envelope changes as the angle berween the card is altered.

A simplified version of the Lagrange Stringed Mathematical Model of 1872 which
is in the Science Museum in London is well worth constructing. Two discs of
strong card are centrally mounted at opposite ends of a spindle which allows
the discs to rotate. They are kept apart by a tube on the spindle. Make holes
near the edge of each card and thread shirring elastic through the
corresponding holes to form a cylindrical cage. Then hold one disc while
turning the other to make some very interesting effects. It is also possible to use
a slide projector to project lines and curves on to the strings.




Curve stitching in art

Among the first to bring together mathematics and art through curve stitching
was the Russian sculptor Naum Gabo (1890-1977). He was onc of the founders
of the Constructivist movement whose ideals were laid down in The Realistic
Manifesto which he wrote with his brother Antoine Pevsner to accompany an
exhibition of their work in Moscow in 1920.

In conventional sculpture, the object is usually created by carving away material
from, say, wood or stone, to reveal a shape within the block. By contrast, the
Constructive approach was to build up a design from separate parts.

By this time Gabo had developed strong views about the direction in which art,
particularly sculpture, should be going and in the Manifesto he stated that “in
sculpture the mass as a sculptural element” should be renounced. He further
advocated bringing “back to sculpture the lines as a direction and in it we affirm
a depth as the one form of space”. Although mathematical influences are
discernable in most of Gabo’s work, the idea of suggesting volume and mass by
enclosing space with strings did not emerge until the 1930s.

Antoine Pevsner's sculptures, while following the tenets propounded in the
Mantifesto are totally different from those of his brother. Pevsner incorporated
curve stitching ideas by welding straight rods so closely together that they
amounted to a curved surface. His Developable Column of 1942 exemplifies this
technique. One later work that could wuly be regarded as three-dimensional
curve stitching is the Magueetie of a Momument Symbolizing the Liberation of
the Spirii dating from 1952 and now in the Tate Gallery.

In 1935 Gabo was persuaded to come to England where he joined the
Hampstead artistic colony which included Henry Moore and Barbara Hepworth.
Both had been influenced by Gabo's Constructivist ideas, and indeed Gabo had
already known Barbara Hepworth and her husband Ben Nicholson in Paris.

Gabo had experimented with strings in sculpture before producing his Spheric
Theme 2nd Variation in 1937-8 and it was at just this time that Henry Moore
incorporated strings in some of his work, only to abandon them soon
afterwards. The actual material for stringing varied; hronze wire and piano
strings were used as was, a little later, nylon. On the other hand, it was not until
1938-9 that Barbara Hepworth followed Henry Moore’s footsteps and began to
include strings in her sculptures. She continued to do so after her move,
towards the end of 1939, to St Ives in Cornwall where the potter Bernard Leach
was already working, and some of these sculptures derive from her drawings of
curves suggested by envelopes.

Soon, Gabo joined Barbara Hepworth and the other artists who were gathering
in St Ives to escape wartime London, but in 1946 moved on to the United States
where he spent his last thirty vears. Many of his sculptures rely on his
imaginative use of three-dimensional curve stitching for their remarkable effect.
Among these are Linear Construction No. 1, Linear Construction No. 2 and
Torsion, Variation. The first two of these achieve a particular brilliance because
their frameworks are made of Perspex which he started using in 1937 and nylon
stringing added extra lustre. Often he produced several versions of his
sculptures in different sizes. What, then, do strings of whatever material
contribute to sculpture? They are undoubtedly central to Gabo’s work; it would
not be too much to say for many of them that the stringing is the sculpture.
With Moore and Hepworth strings play a subtler role, and contrast is certainly
an element when their tautness is compared with the smooth, rounded form of
the mass itself. Strings can add a sense of weightlessness while guiding the eye
from one part of the sculpture to another; at times they also add an extra depth,

This brief survey is limited to four sculptors who. have responded to the
possibilities inherent in curve stitching. However, many other artists have
created works bearing little similarity to each other but nevertheless embodying
the technique of using strings in two dimensions as well as three.

One such artist is Sue Fuller whose plastic thread construction String
Composition 128 was completed in 1904, Kenneth Martin's Screw Mobile
(1956-9), in phosphor bronze and steel derives from related sources as do
several of Richard Lippold's sculptures including Variation No. 7 Full Moon
(1949-50) using nickel-chrome and stainless steel wire and brass rods, and his
1963 Flight for the Pan-Am building in New York.
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Naum Gabo

Linear Construction No. 1 (1942-3) Nawn Gabo Linear Construction No. 2 (1970-71) Naum Gabo
Tare Gallery, London Tate Gallery, LIondon
© Nina and Grabham Williams 1089 © Nina and Grabam Willicms 1980
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Antoine Pevsner Naum Gabo

Magqueette of a Monwument Syinbolising Antoine Pecsner Torsion, Variation (1963) Netvm Gelho
the Liberation of the Spirit (1952} Nina Willicons Collection :
Tate Gallery, London © Nina and Grabam Willicims 1989

© ADAGP Vans. DACS London 1989



Henry Moore

The Bride (1939-40) Henry Moore
Musewm of Modern An, New York
©Henry Moore Foundation 1959
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Stringed Ligure (1938 60) Henry Moore
Tate Gallery, London
©QHenry Moore Foundation 1989



Barbara Hepworth ‘

Winged Figure (1962) Barbara Hepworth Cutrved Form (Bryber 11) (1961) Barbara Hepworth
Jobn Lewis Building, London Hirshborn Sculpture Gavden, Washington D.C. g
© Sir Alan Bowness 1989 © Sir Alan Bowness 1959
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Proportional scale for 36 point circular templates

There is a 36 point circular template
to cut out on page 93. If you prefer
not to cut it out, or want one of a
different size it is easy to make one
using this diagram.

1. On a suitable piece of card or
paper draw a circle of the size you
want your template to be. Mark the
centre of the circle and then cut
around the circumference.

Place the centre of your circle on the
centre of the proportional scale and
mark off the number of points you
require. This scale can be used for 36,
18, 12, 9, 6,4 or 3 equally spaced
points. With only a little estimating it
can be used for 72 and 24 also.

2. If you want to mark points around
an inner circle as well draw such a
circle on your template. If the
paper is not too thick you may be
able to see lines of the
proportional scale through it. If
that is not possible then draw the
radii to the points marked around
the circumference. However, it is
probably easier to make another
smaller template with the diameter
you require.
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Proportional scale for 40 point circular templates
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There is a 40 point circular template
to cut out on page 95. If you prefer
not to cut it out, or want one of a
different size it is easy to make one
using this diagram.

1. On a suitable piece of card or
paper draw a circle of the size that
you want your template to be,
Mark the centre of the circle and
then cut around the circumference.

Place the centre of your circle on the
centre of the proportional scale and
mark off the number of points you
require. This scale can be used for 40,
20, 10, 8, 5 or 4 equally spaced
points. With only a little estimating it
can be used for 80 and 16 points
also.

2. If you want to mark points around
an inner circle as well draw such a
circle on your template. If the
paper is not too thick you may be
able to see the lines of the
proportional scale through it. If
that is not possible then draw the
radii to the points marked around
the circumference. However, it is
probably easier to make another
smaller template with the diameter
you require.,
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36 point circular template

Cut out this circle and use it as a template to divide the circumference of a circle (radius
65mm) into 72, 36, 24, 18, 12, 9, 8, 6, 4 or 3 equal divisions, or to find the comers of a
regular dodecagon, nonagon, hexagon, square or triangle.

The inner circle is half the diameter of the outer one.
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Line division template
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Cut out this scale and use it as a template to mark

a line with 4 or 6mm divisions.
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36 point circle
Outer Radius: 65 mm
Inner Radius: 32.5 mm
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40 point circular template

Cut out this circle and use it as a template to divide the circumference of a circle
(radium 65mm) into 80, 40, 20, 16, 10, 8 or 4 equal divisions, or to find the comers of a
regular, decagon, octagon or square.

Keep your templates in here

The inner circle is half the diameter of the outer one.

Cut out this pocket, score and fold along the
lines and then glue it inside the back cover to
hold vour templates when they are not in use.

Glue

Templates

Glue

95

Glue
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40 point circle
Outer Radius: 65 mm
Inner Radius: 32.5 mm
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